At-Home Enrichment

8th Grade

To provide enrichment to BCS students!
Focus Standard: Cite several pieces of textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>• Complete the “Analyze Craft and Structure: DEVELOPMENT OF CENTRAL IDEAS” handout pp. 3-4 (attached).</td>
</tr>
<tr>
<td>May 4 - 8</td>
<td>• Read the article “Stop Googling. Let’s Talk” pp. 5-7 (attached). What is the central idea of the text? List 3-4 details from the text that support the central idea.</td>
</tr>
<tr>
<td></td>
<td>• Write a 2-3 paragraph summary of the text.</td>
</tr>
<tr>
<td></td>
<td>• What is the author’s purpose for writing this article? Write a brief explanation for your answer and cite several pieces of textual evidence to support your answer.</td>
</tr>
<tr>
<td></td>
<td>• What is the author’s point of view on the topic? Find details from the text that support the author’s point of view.</td>
</tr>
<tr>
<td></td>
<td>• Do you agree or disagree with the author’s point of view? Explain in two paragraphs why or why not and provide evidence from the text to support your stance.</td>
</tr>
</tbody>
</table>

Focus Standard: Write arguments to support claims with clear reasons and relevant evidence.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>• Complete the “Analyze Craft and Structure: AUTHOR’S PERSPECTIVE AND ARGUMENT” handout pp. 8-9 (attached).</td>
</tr>
<tr>
<td>May 11 - 15</td>
<td>• Reread the article “Stop Googling. Let’s Talk” pp. 5-7 (attached). What is the author’s main claim in this article? What facts and opinions does the author use to support his or her claim? Find several pieces of textual evidence that support the claim.</td>
</tr>
<tr>
<td></td>
<td>• Do you agree with the argument and its supporting evidence? Why or why not? Write a response to the essay in which you state a claim and find evidence from the text to support your position.</td>
</tr>
</tbody>
</table>

Focus Standards: Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings; analyze the impact of a specific word choice on meaning and tone.

Weeks 3	• Read “The Rose That Grew From Concrete” p. 10 (attached) and complete the activities.
May 18 - 22	• Tupac uses personification in his poem. (Personification gives human qualities to a nonhuman subject.) Find one or more examples of personification in his poem and explain how it is an example of personification.
	• Using the theme identified on #1 of the handout, write your own poem using personification.

Focus Standards: Compare and contrast one author’s presentation of events with that of another.

| Week 4 | • Complete the “Analyze Craft and Structure: CONFLICTING ARGUMENTS” handout p. 11 (attached). |
| **May 25 - 29** | • After reading the two passages on the handout, which one do you agree with? Why or why not? Using evidence from both texts, write an essay in which you take a position, state a claim, and find evidence from the text to support your position. |
8th Social Studies Enrichment

Focus Standards: Identify causes and consequences of World War II and reasons for the United States' entry into the war.
- Critique major social and cultural changes in the United States since World War II.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1
May 4 - 8</td>
<td>- Read the two articles on “World War II Propaganda” p. 12 (attached).
- What is the central idea of each text? List 3-4 details from the text that support the central idea of each text.
- Write a 2-3 paragraph summary of each text.
- What message was the author trying to convey in each of the texts?
- Create a Venn diagram to illustrate the similarities and differences between the two articles.</td>
</tr>
</tbody>
</table>

Focus Standards: Identify causes and consequences of World War II and reasons for the United States' entry into the war.
- Critique major social and cultural changes in the United States since World War II.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2
May 11 - 15</td>
<td>- Reread the two articles on “World War II Propaganda” p. 12 (attached).
- Write two paragraphs explaining whether you think the usage of propaganda posters was positive or negative. Cite textual evidence from the texts to support your claim.
- Describe the action taking place each political cartoon at the bottom of the handout. What is the message of each cartoon? Use objects in the poster to support your claim.</td>
</tr>
</tbody>
</table>

Focus Standard: Explaining rights of citizens as guaranteed by the Bill of Rights under the Constitution of the United States.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 3
May 18 - 22</td>
<td>- The Bill of Rights was written more than 200 years ago when our country was, in many ways, a very different place. Over time, the Constitution has been amended, or changed, and now includes a total of 27 amendments. But the original Bill of Rights has not changed.
- Why is The Bill of Right important to our country? What purpose does it serve for our citizens?
- If you could add one more amendment to the Bill of Rights, what would it be and why? Be sure to explain the right or freedom your amendment would protect and why you believe it is important for Americans to have that right or freedom</td>
</tr>
</tbody>
</table>

Focus Standards: Determine how regions are used to describe the organization of Earth’s surface. Identifying physical and human features used as criteria for mapping formal, functional, and perceptual regions. Examples: physical—landforms, climates

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 4
May 25 - 29</td>
<td>- Complete the “Climate Zones of North America” activities p. 13 (attached).
- Think about why people may have founded cities where they are considering the climate in different areas. What factors influenced settlement? What factors may have made settlement more difficult? Write a short explanation of these questions using a few of the cities in the chart.</td>
</tr>
</tbody>
</table>
The main or **central idea** of a text or story is the author’s main point or message to the reader. The central idea is what the author wants readers to remember. Supporting details are the facts and examples that help the reader gain a deeper understanding of the central idea.

Before you begin to read an informational text, such as an article or chapter in a textbook, use basic text features. Scan the text for titles, headings, subheadings, and boldfaced words. Look for illustrations and captions. These features will give you clues to help you identify the central idea. Then, as you read, supporting details will help clarify the central idea. When you read an informational text, try to figure out what the author is trying to tell you.

Ask Questions to Preview an Article

- What do the title, headings, or subheadings tell me about the topic?
- What information do the photographs, diagrams, illustrations, and captions provide?
- What subject is mentioned in the first sentence of the article?

DIRECTIONS: Read the title and first sentence of the paragraph below to predict what the text will be about. Then, read the paragraph all the way through and answer the questions that follow.

Spiders Versus Insects

While we often think of spiders as insects, they are actually part of a distinct family. Spiders, along with scorpions, ticks, and mites, are part of a group of animals called arachnids. Spiders differ from insects in several ways. First, they have eight legs and two body segments, while insects have six legs and three body segments. Spiders have simple eyes, while insects have compound eyes. Most insects have wings; spiders do not. While not all spiders spin webs, all spiders can make silk thread. This is another way in which they differ from insects.

1. What is the central idea of this paragraph?

2. Did previewing the title and first sentence help you predict what the paragraph would be about? Explain your answer.
ANALYZE CRAFT AND STRUCTURE DEVELOPMENT OF CENTRAL IDEAS

DIRECTIONS: Preview the text below, looking for clues to the central idea. Then, read the text and answer the questions that follow.

Understanding Medical Reports

A medical report provides health news, such as information about a new medication or illness. Medical reports on television can give you important information that you need to know, but they can also be scary. It is important to understand what goes into medical reports so that you can evaluate them and stay informed.

Medical reports often include complicated information that is difficult to present in a short period of time. The job of a medical reporter is to achieve a combination of accuracy and dramatic presentation. To get people to pay attention to the story, a reporter may use stories of real people to tell about a problem or benefit.

ANALYZE Sometimes a report about a new health danger can cause unnecessary fears. People hear certain words and focus on them. For example, something may be shown to double your chance of contracting a disease. That sounds bad! But the real question is, what is your chance of getting the disease in the first place? If the chance is very, very small, then doubling it means that it is still very small. If the disease is more common, then doubling the chance may be something to worry about.

INVESTIGATE If a medical report seems to apply to you, use a variety of sources, including longer and more detailed reports and your doctor, to investigate further.

1. What is the central idea of the passage?

2. Is the central idea implied or directly stated? Explain.

3. List two details from the text that support the central idea.

4. The subheads give clues to the central idea and two things you should do when you hear a medical report. Summarize the recommendations under the two subheads.

© Pearson Education, Inc. or its affiliates. All rights reserved.
Stop Googling. Let’s Talk. By Sherry Turkle

Sept. 26, 2015

COLLEGE students tell me they know how to look someone in the eye and type on their phones at the same time, their split attention undetected. They say it’s a skill they mastered in middle school when they wanted to text in class without getting caught. Now they use it when they want to be both with their friends and, as some put it, “elsewhere.”

These days, we feel less of a need to hide the fact that we are dividing our attention. In a 2015 study by the Pew Research Center, 89 percent of cellphone owners said they had used their phones during the last social gathering they attended. But they weren’t happy about it; 82 percent of adults felt that the way they used their phones in social settings hurt the conversation.

I’ve been studying the psychology of online connectivity for more than 30 years. For the past five, I’ve had a special focus: What has happened to face-to-face conversation in a world where so many people say they would rather text than talk? I’ve looked at families, friendships and romance. I’ve studied schools, universities and workplaces. When college students explain to me how dividing their attention plays out in the dining hall, some refer to a “rule of three.” In a conversation among five or six people at dinner, you have to check that three people are paying attention — heads up — before you give yourself permission to look down at your phone. So conversation proceeds, but with different people having their heads up at different times. The effect is what you would expect: Conversation is kept relatively light, on topics where people feel they can drop in and out.

Young people spoke to me enthusiastically about the good things that flow from a life lived by the rule of three, which you can follow not only during meals but all the time. First of all, there is the magic of the always available elsewhere. You can put your attention wherever you want it to be. You can always be heard. You never have to be bored. When you sense that a lull in the conversation is coming, you can shift your attention from the people in the room to the world you can find on your phone. But the students also described a sense of loss.

One 15-year-old I interviewed at a summer camp talked about her reaction when she went out to dinner with her father and he took out his phone to add “facts” to their conversation. “Daddy,” she said, “stop Googling. I want to talk to you.” A 15-year-old boy told me that someday he wanted to raise a family, not the way his parents are raising him (with phones out during meals and in the park and during his school sports events) but the way his parents think they are raising him — with no phones at meals and plentiful family conversation. One college junior tried to capture what is wrong about life in his generation. “Our texts are fine,” he said. “It’s what texting does to our conversations when we are together that’s the problem.”

It’s a powerful insight. Studies of conversation both in the laboratory and in natural settings show that when two people are talking, the mere presence of a phone on a table between them or in the periphery of their vision changes both what they talk about and the degree of connection they feel. People keep the conversation on topics where they won’t mind being interrupted. They don’t feel as invested in each other. Even a silent phone disconnects us.

In 2010, a team at the University of Michigan led by the psychologist Sara Konrath put together the findings of 72 studies that were conducted over a 30-year period. They found a 40 percent decline in empathy among college students, with most of the decline taking place after 2000.

Across generations, technology is implicated in this assault on empathy. We’ve gotten used to being connected all the time, but we have found ways around conversation — at least from conversation that is open-ended and spontaneous, in which we play with ideas and allow ourselves to be fully present and vulnerable. But it is in this type of conversation — where we learn to make eye contact, to become aware of another person’s posture and tone, to comfort one another and respectfully challenge one another — that empathy and intimacy flourish. In these conversations, we learn who we are.

Of course, we can find empathic conversations today, but the trend line is clear. It’s not only that we turn away from talking face to face to chat online. It’s that we don’t allow these conversations to happen in the first place because we keep our phones in the landscape.
In our hearts, we know this, and now research is catching up with our intuitions. We face a significant choice. It is not about giving up our phones but about using them with greater intention. Conversation is there for us to reclaim. For the failing connections of our digital world, it is the talking cure.

The trouble with talk begins young. A few years ago, a private middle school asked me to consult with its faculty: Students were not developing friendships the way they used to. At a retreat, the dean described how a seventh grader had tried to exclude a classmate from a school social event. It’s an age-old problem, except that this time when the student was asked about her behavior, the dean reported that the girl didn’t have much to say: “She was almost robotic in her response. She said, ‘I don’t have feelings about this.’ She couldn’t read the signals that the other student was hurt.”

The dean went on: “Twelve-year-olds play on the playground like 8-year-olds. The way they exclude one another is the way 8-year-olds would play. They don’t seem able to put themselves in the place of other children.”

One teacher observed that the students “sit in the dining hall and look at their phones. When they share things together, what they are sharing is what is on their phones.” Is this the new conversation? If so, it is not doing the work of the old conversation. The old conversation taught empathy. These students seem to understand each other less.

But we are resilient. The psychologist Yadla T. Uhls was the lead author on a 2014 study of children at a device-free outdoor camp. After five days without phones or tablets, these campers were able to read facial emotions and correctly identify the emotions of actors in videotaped scenes significantly better than a control group. What fostered these new empathic responses? They talked to one another. In conversation, things go best if you pay close attention and learn how to put yourself in someone else’s shoes. This is easier to do without your phone in hand. Conversation is the most human and humanizing thing that we do.

I have seen this resilience during my own research at a device-free summer camp. At a nightly cabin chat, a group of 14-year-old boys spoke about a recent three-day wilderness hike. Not that many years ago, the most exciting aspect of that hike might have been the idea of roughing it or the beauty of unspoiled nature. These days, what made the biggest impression was being phoneless. One boy called it “time where you have nothing to do but think quietly and talk to your friends.” The campers also spoke about their new taste for life away from the online feed. Their embrace of the virtue of disconnection suggests a crucial connection: The capacity for empathic conversation goes hand in hand with the capacity for solitude.

In solitude we find ourselves; we prepare ourselves to come to conversation with something to say that is authentic, ours. If we can’t gather ourselves, we can’t recognize other people for who they are. If we are not content to be alone, we turn others into the people we need them to be. If we don’t know how to be alone, we’ll only know how to be lonely.

A VIRTUOUS circle links conversation to the capacity for self-reflection. When we are secure in ourselves, we are able to really hear what other people have to say. At the same time, conversation with other people, both in intimate settings and in larger social groups, leads us to become better at inner dialogue.

But we have put this virtuous circle in peril. We turn time alone into a problem that needs to be solved with technology. Timothy D. Wilson, a psychologist at the University of Virginia, led a team that explored our capacity for solitude. People were asked to sit in a chair and think, without a device or a book. They were told that they would have from six to 15 minutes alone and that the only rules were that they had to stay seated and not fall asleep. In one experiment, many student subjects opted to give themselves mild electric shocks rather than sit alone with their thoughts.

People sometimes say to me that they can see how one might be disturbed when people turn to their phones when they are together. But surely there is no harm when people turn to their phones when they are by themselves? If anything, it’s our new form of being together. But this way of dividing things up misses the essential connection between solitude and conversation. In solitude we learn to concentrate and imagine, to listen to ourselves. We need these skills to be fully present in conversation.

Every technology asks us to confront human values. This is a good thing, because it causes us to reaffirm what they are. If we are now ready to make face-to-face conversation a priority, it is easier to see what the next steps should be. We are not looking for simple solutions. We are looking for beginnings. Some of them may seem familiar by now, but they are no less challenging for that. Each addresses only a small piece of what silences us. Taken together, they can make a difference.
It is always wise to approach our relationship with technology in the context that goes beyond it. We live, for example, in a political culture where conversations are blocked by our vulnerability to partisanship as well as by our new distractions. We thought that online posting would make us bolder than we are in person, but a 2014 Pew study demonstrated that people are less likely to post opinions on social media when they fear their followers will disagree with them. Designing for our vulnerabilities means finding ways to talk to people, online and off, whose opinions differ from our own.

Sometimes it simply means hearing people out. A college junior told me that she shied away from conversation because it demanded that one live by the rigors of what she calls the “seven minute rule.” It takes at least seven minutes to see how a conversation is going to unfold. You can’t go to your phone before those seven minutes are up. If the conversation goes quiet, you have to let it be. For conversation, like life, has silences — what some young people I interviewed called “the boring bits.” It is often in the moments when we stumble, hesitate and fall silent that we most reveal ourselves to one another. The young woman who is so clear about the seven minutes that it takes to see where a conversation is going admits that she often doesn’t have the patience to wait for anything near that kind of time before going to her phone. In this she is characteristic of what the psychologists Howard Gardner and Katie Davis called the “app generation,” which grew up with phones in hand and apps at the ready. It tends toward impatience, expecting the world to respond like an app, quickly and efficiently. The app way of thinking starts with the idea that actions in the world will work like algorithms: Certain actions will lead to predictable results.

This attitude can show up in friendship as a lack of empathy. Friendships become things to manage; you have a lot of them, and you come to them with tools. So here is a first step: To reclaim conversation for yourself, your friendships and society, push back against viewing the world as one giant app. It works the other way, too: Conversation is the antidote to the algorithmic way of looking at life because it teaches you about fluidity, contingency and personality.

This is our moment to acknowledge the unintended consequences of the technologies to which we are vulnerable, but also to respect the resilience that has always been ours. We have time to make corrections and remember who we are — creatures of history, of deep psychology, of complex relationships, of conversations, artless, risky and face to face.

One start toward reclaiming conversation is to reclaim solitude. Some of the most crucial conversations you will ever have will be with yourself. Slow down sufficiently to make this possible. And make a practice of doing one thing at a time. Think of unitasking as the next big thing. In every domain of life, it will increase performance and decrease stress.

But doing one thing at a time is hard, because it means asserting ourselves over what technology makes easy and what feels productive in the short term. Multitasking comes with its own high, but when we chase after this feeling, we pursue an illusion. Conversation is a human way to practice unitasking.

Our phones are not accessories, but psychologically potent devices that change not just what we do but who we are. A second path toward conversation involves recognizing the degree to which we are vulnerable to all that connection offers. We have to commit ourselves to designing our products and our lives to take that vulnerability into account. We can choose not to carry our phones all the time. We can park our phones in a room and go to them every hour or two while we work on other things or talk to other people. We can carve out spaces at home or work that are device-free, sacred spaces for the paired virtues of conversation and solitude. Families can find these spaces in the day to day — no devices at dinner, in the kitchen and in the car. Introduce this idea to children when they are young so it doesn’t spring up as punitive but as a baseline of family culture. In the workplace, too, the notion of sacred spaces makes sense: Conversation among employees increases productivity.

We can also redesign technology to leave more room for talking to each other. The “do not disturb” feature on the iPhone offers one model. You are not interrupted by vibrations, lights or rings, but you can set the phone to receive calls from designated people or to signal when someone calls you repeatedly. Engineers are ready with more ideas: What if our phones were not designed to keep us attached, but to do a task and then release us? What if the communications industry began to measure the success of devices not by how much time consumers spend on them but by whether it is time well spent?
An author’s argument focuses on claims the author makes. A claim states the author’s position. Strong arguments can help persuade readers to agree with the author.

To persuade readers to agree with his or her claims, authors provide evidence. The evidence may include both facts and opinions that support their claims. Facts can be proved true and are often based on research. Opinions express a person’s beliefs. Opinions may be supported by facts, but they cannot be proved.

To evaluate an author’s argument, ask these questions:

- Are the author’s claims sensible?
- Is the author’s reasoning logical?
- Does the author offer enough evidence—facts that can be proved—to support his or her claims?
- Is all the evidence relevant, or closely related to the topic?

An author’s perspective is his or her attitude, beliefs, and feelings. If the author’s perspective is too obvious or affects the argument too strongly, the argument can be less persuasive.

DIRECTIONS: Read the passage below. Then, answer the questions that follow.

Soft drinks have no place in public schools. Soft drinks are basically sugar and water, with tiny quantities of artificial coloring and flavors. Numerous studies have shown that people who drink soft drinks suffer health problems. When students go to school, they shouldn’t be exposed to these unhealthy drinks.

1. What is the author’s main claim in this paragraph?

2. What facts and opinions does the author use to support his or her claim?

3. How could you prove whether the second sentence is true?

4. What makes the last sentence an opinion?
A. DIRECTIONS: Read the passage below. Then, answer the questions that follow.

A group of scientists reports that international trade in honeybee colonies is spreading a deadly bee virus, the “deformed wing virus.” Alone, the virus is not a threat to honeybees, but in combination with Varroa mites—another threat to honeybee colonies—the virus is deadly. By examining information about honeybees in 17 countries, the researchers can map the routes by which the virus has spread. These routes match the international movement of honeybee colonies, says Dr. Lena Wilfert, one of the study’s authors.

1. What is the main claim stated in this passage?

2. Does the writer give a source for the facts quoted? If so, what is the source?

3. Do you agree with the argument and its supporting evidence? Explain.

B. DIRECTIONS: Read the passage below. Then, answer the questions that follow.

(1) Most high-school students shouldn't waste their time with higher-level math courses such as trigonometry and calculus. (2) Basic math skills are important to everyone. (3) We all need to know how to add, subtract, multiply, and divide. (4) But very few jobs in the United States require knowledge of trigonometry or calculus. (5) And certainly these disciplines are not used in the everyday lives of most Americans. (6) It makes little sense for students to dedicate major parts of their high-school careers to math that they will never need or use.

1. Is the first sentence a fact or an opinion? ____________________________

2. How could you prove that the fourth sentence is a fact? ____________________________

3. Is the last sentence an opinion? Explain. ____________________________
The Rose That Grew from Concrete
By Tupac Shakur
1999

Tupac Shakur (1971-1996) was an African American rapper, actor, poet, and activist. Shakur continues to be considered an influential rapper today and has been inducted into the Rock and Roll Hall of Fame. As you read, take notes on how the speaker feels about the rose.

Did you hear about the rose that grew from a crack in the concrete? Proving nature’s laws wrong it learned to walk without having feet.

Funny it seems, but by keeping its dreams, it learned to breathe fresh air. Long live the rose that grew from concrete when no one else ever cared.

Text-Dependent Questions

Directions: For the following questions, choose the best answer or respond in complete sentences.

1. PART A: Which of the following identifies a main theme of the text?
 A. All living things need support from others in order to grow.
 B. We must learn and grow from our failures.
 C. People can overcome difficulties and succeed.
 D. Nature can overcome problems better than people.

2. PART B: Which detail from the poem best supports the answer to Part A?
 A. “Did you hear about the rose that grew” (Lines 1)
 B. “learned to walk without having feet.” (Line 4)
 C. “Long live the rose that grew from concrete” (Line 7)
 D. “when no one else ever cared.” (Line 8)

3. How does the speaker's point of view influence how the rose is described?
 A. Curious about the rose, the speaker asks several questions about it.
 B. Believing that the rose is not real, the speaker exaggerates its qualities.
 C. Feeling pity for the rose, the speaker lists all of the hardships it has faced.
 D. Impressed by the rose, the speaker explains what makes it so admirable.

4. What does the phrase “the rose that grew from concrete” mean figuratively as used in this poem?

In the context of the poem, how does an individual rise above hardship? Have you ever felt like a “rose that grew from concrete,” as described by Tupac Shakur? If so, what was the difficult situation that you faced, and how did you rise above it? If not, who is someone else you might describe as a “rose that grew from concrete”? What makes them similar to this rose?

In the context of the poem, can we take full control over our own fate? Do you think it is necessary to get support from others, or can we succeed in difficult situations on our own, without others’ help?
ANALYZE CRAFT AND STRUCTURE > CONFLICTING ARGUMENTS

DIRECTIONS: Read the two passages. Then, answer the questions.

- An **overgeneralization** makes a conclusion that is too broad. It uses words such as *always, never,* or *everyday*.

- A **slippery slope** claims unreasonably that one event will lead to other events. It argues that the first event must be prevented to prevent the later events from occurring.

Passage 1

Everyone loves walking through the Eastern Woods, but if we do not preserve it now, we may lose it forever. This beautiful piece of land is visited by more than 80,000 tourists per year. More than 30 varieties of endangered species, including beautiful birds and mammals, live here. The proposal to allow development of a portion of this land may seem reasonable now, but when will it stop? Developers will not be satisfied until the entire forest has been made into housing developments and shopping malls. For the sake of the animals and our enjoyment of nature, we must not allow development of the Eastern Woods.

Passage 2

The Eastern Woods is a popular destination, and it will grow even more popular if this development moves forward. What we are proposing will affect only a small portion of the forest. The main hiking trails will be undisturbed, and the animals who live here will not notice a thing. The people who live nearby will benefit greatly, however, from the new shopping spaces that will serve them. These new spaces will also provide more than 100 new jobs to people who need them. While people enjoy hiking through nature, they also need to shop and to work. This development will give the people what they need.

1. What is the main disagreement between the authors of these passages?

2. What is one point that the two passages agree on?

3. What slippery slope argument is presented in one of the passages?

4. How does the author of Passage 2 support the idea that people will benefit from the development?

5. What overgeneralization is made in one of the passages?

© Pearson Education, Inc. or its affiliates. All rights reserved.
WORLD WAR II POSTERS AND PROPAGANDA

By Madison Horne

These World War II Propaganda Posters Rallied the Home Front

As the U.S. sent troops to the front lines, artists were recruited to encourage those at home to do their part.

- When Britain and France went to war with Germany in 1939, Americans were divided over whether to join the war effort. It wouldn't be until the surprise attacks on Pearl Harbor in December 1941 that the United States would be thrust into World War II. Once U.S. troops were sent to the front lines, hundreds of artists were put to work to create posters that would rally support on the home front.

- Citizens were invited to purchase war bonds and take on factory jobs to support production needs for the military. As men were sent to battlefields, women were asked to branch out and take on jobs as riveters, welders and electricians.

- To preserve resources for the war effort, posters championed carpooling to save on gas, warned against wasting food and urged people to collect scrap metal to recycle into military materials. In the spring of 1942, rationing programs were implemented that set limits on everyday purchases.

- While many posters touted positive patriotic messages, some tapped fear to rally support for the Allied side and caution against leaking information to spies. "Loose lips sink ships" became a famous saying. Meanwhile, graphic images depicted a bloodthirsty Adolf Hitler and racist imagery of Japanese people with sinister, exaggerated features.

- Today, the posters offer a glimpse into the nation's climate during World War II and how propaganda was used to link the home front to the front lines.

33 American WWII Propaganda Posters That Weren't Always Politically Correct

By Laura Martin

https://allthatinteresting.com/american-world-war-2-propaganda-posters

- Every country involved in World War II was busy producing propaganda in order to increase support for its war efforts. And the Allies were especially keen on promoting their own virtues and ignoring the public's hatred towards the enemy Axis powers.

- However, the American government did not particularly like the idea of World War 2 propaganda at first. Nonetheless — in response to pressure exerted by businesses, advertising companies, and the media — the government was soon compelled to increase propaganda production.

- These efforts promoted patriotism, encouraged men to join the armed services, and encouraged women to become nurses or join the local factory's workforce. Whatever its purpose, American World War 2 propaganda was among the most striking, especially when it came to posters. Their bright colors and sensational language no doubt drew the viewer in and encouraged him or her to aid the war effort in every way imaginable — by buying war bonds, rationing their food, walking instead of driving, and even refusing to engage in "careless talk" that could give away information of troop movements.

- The main message was this: Every citizen can greatly help the war effort by performing seemingly menial tasks, such as growing their own food or conserving products such as fats, coffee, and rubber. And when these posters weren't asking ordinary citizens to pitch in, they were making fun of the Axis powers, especially Hitler. One humorous poster, for example, depicted Hitler with his pants down along with a slogan that read, "Let's catch him with his 'panzers' down!" All in all, America created more than 200,000 propaganda poster designs during the war, and you can find some of the most striking in the gallery above.
Climate Zones of North America

The map below shows the various climate zones found in North America. Review this map. Pay close attention to the degree of climate variation across the map. Think about how climate in different areas might have influenced settlement patterns.

![Map of North America showing climate zones](image)

After studying the map carefully, complete this chart by identifying the climate zone for each city listed. Then briefly describe the characteristics of each zone. When you have completed the chart, answer the questions that follow.

<table>
<thead>
<tr>
<th>Cities</th>
<th>Climate Zones and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
</tr>
<tr>
<td>Mexico City</td>
<td></td>
</tr>
<tr>
<td>Denver</td>
<td></td>
</tr>
<tr>
<td>Repulse Bay</td>
<td></td>
</tr>
<tr>
<td>Monterrey</td>
<td></td>
</tr>
</tbody>
</table>

PBS Learning
Assignment 1 Week 1: May 4–8

Exponents

An exponent is used to indicate repeated multiplication of a number.

5^3 means to multiply 3 factors of 5.

$5^3 = 5 \times 5 \times 5 = 125$

Many mathematical expressions contain exponents. The order of operations is used to simplify such expressions.

EXAMPLE

Find the value of each expression.

a. $3^2 \times 10$

b. $6^2 \times 3^2$

c. $8 + 4^3$

d. $285 - 7^2$

Step 1: For these expressions, evaluate the exponent first.

Step 2: Carry out any other operations.

Solution:

a. $3^2 \times 10 = (3 \times 3) \times 10 = 9 \times 10 = 90$

b. $6^2 \times 3^2 = 36 \times 9 = 324$

c. $8 + 4^3 = 8 + 64 = 72$

d. $285 - 7^2 = 285 - 49 = 236$

PRACTICE

Find value of each expression.

1. $6^2 \times 2^2$

2. $9^2 \times 4$

3. $5^2 \times 2$

4. $8^3 + 270$

5. $2^5 - 16$

6. $4^2 + 2^3$

7. $10^3 \div 10$

8. 12×3^5

9. $11^2 \times 2$

10. $10^2 \div 5^2$

11. $3^3 \times 8$

12. 11×4^3

13. $9^2 + 2^2$

14. 7×9^2

15. $10^4 - 5000$
Expressions and Equations

An equation is a mathematical sentence that contains an equal (=) sign.
An expression has numbers and symbols.

The table below shows some of the key words you can use in word phrases for variable expressions.

<table>
<thead>
<tr>
<th>Addition</th>
<th>Subtraction</th>
<th>Multiplication</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>plus</td>
<td>minus</td>
<td>times</td>
<td>quotient</td>
</tr>
<tr>
<td>sum</td>
<td>difference</td>
<td>product</td>
<td>per</td>
</tr>
<tr>
<td>add</td>
<td>subtract</td>
<td>in all</td>
<td>each</td>
</tr>
<tr>
<td>sum</td>
<td>less than</td>
<td>multiply</td>
<td>split</td>
</tr>
<tr>
<td>total</td>
<td>decreased by</td>
<td></td>
<td>divide</td>
</tr>
</tbody>
</table>

EXAMPLE A

Is $7x + 5$ an expression or an equation?

Solution: $7x + 5$ is an expression because it does not contain an equal sign.

EXAMPLE B

Write an expression to represent six more than a number.

Step 1: Look for words to tell you which operation or operations to use. “more than” means to add

Step 2: Write an expression for “six more.”

Step 3: Write an expression for “a number.” Let n represent a number.

Solution: The expression $n + 6$ can represent six more than a number.

Expressions can be evaluated (not solved) by substituting values for the variables. Once the values are substituted, use the order of operations to evaluate.

EXAMPLE C

What is the value of $5x + 3y$, if $x = 3.2$ and $y = 5$?

Step 1: Substitute the value for the variables.

Step 2: Simplify using the order of operations.

Solution: The value of the expression is 31.
Expressions and Equations (continued)

PRACTICE

Identify each as an expression or equation.

1. $7x + 4 + 2y$
2. $9x - 15 = 24$
3. $15 - 2x + 7 - x$
4. $8x + 2 - x = 9$

Write an expression for each word phrase.

5. a number decreased by three
6. three-fourths of a number
7. two more than three times a number
8. seven less than a number
9. the product of a number and 8
10. a number divided by 6
11. two less than three times a number
12. seven increased by a number

Evaluate each expression if $x = 4.2$ and $y = 2.7$.

13. $2x + 3$
14. $16 - 3y$
15. $x + y$
16. $x - 3$
17. $8x - y$
18. $21 + 5y$
19. $3x - y$
20. $7y - 3x$
Finding Slope Given a Table or a Graph

The slope of a line is determined by the ratio $\frac{\text{change in } y}{\text{change in } x}$ between any two points that lie on the line.

The slope is the constant rate of change of a line.

EXAMPLE A

Use a graph to determine the slope of a line.

Step 1: Identify two points on the line.
In this case, use (0, 2) and (2, 1).

Step 2: Calculate the vertical change from one point to the next.
In this case, you must count down 1 space to move from the point (0, 2) to the point (2, 1).

Step 3: Calculate the horizontal change from one point to the next.
In this case, you must count right 2 spaces to move from the point (0, 2) to the point (2, 1).

Step 4: Write the ratio showing $\frac{\text{vertical change}}{\text{horizontal change}}$ in simplest form.
In this case, the slope is represented by the ratio $-\frac{1}{2}$, or $-\frac{1}{2}$.

Solution: The slope is negative because the line falls from left to right.

GUIDED PRACTICE

The ratio of vertical change to horizontal change is the same between any two points on a line.
Use two different points on the line above to show this is true.

EXAMPLE B

Use a table to determine the slope of a line.

Step 1: Identify the change in each consecutive pair of y-values in the table. In this case, the changes are 5, 5 and 10.

Step 2: Identify the change in each consecutive pair of x-values in the table. In this case, the changes are 1, 1, and 2.

Step 3: Write ratios showing the corresponding $\frac{\text{vertical change}}{\text{horizontal change}}$ in simplest form. In this case, the ratios $\frac{5}{1}$, $\frac{5}{1}$, and $\frac{10}{2}$ each simplify to $\frac{5}{1}$.

The slope of the line is $\frac{5}{1}$.

© 2014 College Board. All rights reserved.
Finding Slope Given a Table or a Graph (continued)

PRACTICE

Determine the slope for each of the following.

1.
 ![Graph 1](image1)

2.
 ![Graph 2](image2)

3.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>-1</td>
</tr>
</tbody>
</table>

4.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
</tr>
</tbody>
</table>
What is matter? Matter is everything around you. Atoms and compounds are all made of very small parts of matter. Those atoms go on to build the things you see and touch every day. Matter is defined as anything that has mass and takes up space (it has volume).

What is mass? Mass is the amount of matter in an object. You might have a small object with a lot of mass such as a statue made of lead (Pb). You might have a large object with very little mass such as a balloon filled with helium (He). You should also know there is a difference between mass and weight. Mass is a measure of the matter in an object while weight is a measure of gravity’s pull on an object.

What is volume? Volume is the amount of space something occupies. Words such as big, little, long, or short are used to describe volumes. A marble takes up a small volume while a star occupies a large volume. Different states of matter will fill volumes in different ways.

Even though matter can be found all over the Universe, you will only find it in a few forms (states) on Earth. We cover five states of matter on the site. Each of those states is sometimes called a phase. There are many other states of matter that exist in extreme environments. Scientists will probably discover more states of matter as we continue to explore the Universe.

Five States of Matter

Changing States of Matter

All matter can move from one state to another. It may require extreme temperatures or extreme pressures, but it can be done. Sometimes a substance doesn’t want to change states. You have to use all of your tricks when that happens. To create a solid, you might have to decrease the temperature by a huge amount and then add pressure.
Day 16 – Reading Passages Grade 8 Physical Science

For example, oxygen \(\text{O}_2 \) will solidify at -361.8 degrees Fahrenheit (-218.8 degrees Celsius) at standard pressure. However, it will freeze at warmer temperatures when the pressure is increased.

Solid to a Liquid and Back to a Solid

![Solid to a Liquid and Back to a Solid diagram]

Imagine that you are a solid. You’re a cube of ice sitting on a counter. You dream of becoming liquid water. You need some energy. Heat is probably the easiest energy you can use to change your physical state. The atoms in a liquid have more energy than the atoms in a solid.

There is a special temperature for every substance called the **melting point**. When a solid reaches the temperature of its melting point, it can become a liquid. For water, the temperature needs to be a little over zero degrees Celsius \((0^\circ C)\) for you to melt.

If you were salt, sugar, or rock, your melting point is higher than that of water. How do you know that fact? If their melting points were lower, they would also be liquids when the temperature is above zero degrees Celsius. The reverse of the melting process is called **freezing**. Liquid water freezes and becomes solid ice when the molecules lose energy.

Liquid to a Gas and Back to a Liquid

![Liquid to a Gas and Back to a Liquid diagram]

When you are a **liquid** and want to become a **gas**, you need to find a lot of energy. Once you can direct that energy into your molecules, they will start to **vibrate**. If they vibrate enough, they can escape the limitations of the liquid environment and become a gas. When you reach your **boiling point**, the molecules in your system have enough energy to become a gas.

The reverse is true if you are a gas. You need to lose some energy from your very excited gas atoms. The easy answer is to lower the surrounding temperature. When the temperature drops, energy will be **transferred** out of your gas atoms into the colder environment. When you reach the temperature of the **condensation point**, you become a liquid. If you were water vapor over a boiling pot of water and you hit a wall, the wall would be cool, absorb some of your extra energy, and you could quickly become a liquid. Cooler objects often absorb energy from hotter objects.

Mixture Basics

Mixtures are absolutely everywhere you look. Most things in nature are mixtures. Look at rocks, the ocean, or even the atmosphere. They are all mixtures, and mixtures are about **physical properties**, not chemical ones. That statement means the individual molecules enjoy being near each other, but their fundamental chemical structure does not change when they enter the mixture. If the chemical structure changed, it would be called a **reaction**.
When you see distilled water (H$_2$O), it's a pure substance. That means that there are only water molecules in the liquid. A mixture would be a glass of water with other things dissolved inside, maybe one of those powders you take if you get sick. Each of the substances in that glass keeps its own chemical properties. So, if you have some dissolved substances in water, you can boil off the water and still have those dissolved substances left over. If you have some salt (NaCl) in water and then boil off the water, the salt remains in the pan. The salt is left because it takes very high temperatures to melt salt (even more to boil it).

Mixtures are Everywhere

There are an infinite number of mixtures. Anything you can combine is a mixture. Think of everything you eat. Just think about how many cakes there are. Each of those cakes is made up of a different mixture of ingredients. Even the wood in your pencil is considered a mixture. There is the basic cellulose of the wood, but there are also thousands of other compounds in that pencil. Solutions are also mixtures, but all of the molecules are evenly spread out through the system. They are called homogenous mixtures.

If you put sand into a glass of water, it is considered to be a mixture. You can always tell a mixture, because each of the substances can be separated from the group in different physical ways. You can always get the sand out of the water by filtering the water away. If you were busy, you could just leave the sand and water mixture alone for a few minutes. Sometimes mixtures separate on their own. When you come back, you will find that all of the sand has sunk to the bottom. Gravity was helping you with the separation. Don't forget that a mixture can also be made of two liquids. Even something as simple as oil and water is a mixture.
Solutions and Mixtures

Before we dive into solutions, let’s separate solutions from other types of mixtures. Solutions are groups of molecules that are mixed and evenly distributed in a system. Scientists say that solutions are homogenous systems. Everything in a solution is evenly spread out and thoroughly mixed. Heterogeneous mixtures have a little more of one thing (higher concentration) in one part of the system when compared to another.

Let’s compare sugar in water (H₂O) to sand in water. Sugar dissolves and is spread throughout the glass of water. The sand sinks to the bottom. The sugar-water is a homogenous mixture while the sand-water is a heterogeneous mixture. Both are mixtures, but only the sugar-water can also be called a solution.

Can anything be in a Solution?

Pretty much. Solutions can be solids dissolved in liquids. When you work with chemistry or even cook in your kitchen, you will usually be dissolving solids into liquids. Solutions can also be gases dissolved in liquids, such as carbonated water. There can also be gases in other gases and liquids in liquids. If you mix things up and they stay at an even distribution, it is a solution. You probably won’t find people making solid-solid solutions. They usually start off as solid/gas/liquid-liquid solutions and then harden at room temperature. Alloys with all types of metals are good examples of solid solutions at room temperature.

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas-Gas</td>
<td>Air</td>
</tr>
<tr>
<td>Gas-Liquid</td>
<td>Carbon Dioxide (CO₂) in Soda</td>
</tr>
<tr>
<td>Gas-Solid</td>
<td>Hydrogen (H₂) in Palladium (Pd) Metal</td>
</tr>
<tr>
<td>Liquid-Liquid</td>
<td>Gasoline</td>
</tr>
<tr>
<td>Liquid-Solid</td>
<td>Dental Fillings</td>
</tr>
<tr>
<td>Solid-Solid</td>
<td>Metal Alloys Such as Sterling Silver</td>
</tr>
</tbody>
</table>
Grade 8 Physical Science

Questions

Week 1: May 4-8
1. Andy has four pieces of metal. He observed the appearance, measured the mass, volume, and melting point, and calculated the density of each piece of metal. See the data in Table 1.

<table>
<thead>
<tr>
<th>Metal Sample</th>
<th>Appearance</th>
<th>Mass (g)</th>
<th>Melting Point (°C)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silvery</td>
<td>150</td>
<td>660</td>
<td>2.70</td>
</tr>
<tr>
<td>2</td>
<td>Bluish pale gray</td>
<td>110</td>
<td>692</td>
<td>7.14</td>
</tr>
<tr>
<td>3</td>
<td>Silvery</td>
<td>150</td>
<td>962</td>
<td>10.5</td>
</tr>
<tr>
<td>4</td>
<td>Silvery</td>
<td>120</td>
<td>660</td>
<td>2.69</td>
</tr>
</tbody>
</table>

Tell Andy whether any pieces of metal are likely the same. Support your claim by describing how you used the information in the data table and why.

Week 2: May 11-15
2. Miranda found four different bottles filled with unknown pure liquids. She measured the mass, volume, and boiling point of these liquids, and calculated the density which are displayed in Table 1 below.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mass (g)</th>
<th>Volume (cm³)</th>
<th>Density (g/cm³)</th>
<th>Boiling Point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.10</td>
<td>6.10</td>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>5.43</td>
<td>6.10</td>
<td>0.890</td>
<td>211</td>
</tr>
<tr>
<td>3</td>
<td>9.38</td>
<td>10.2</td>
<td>0.920</td>
<td>321</td>
</tr>
<tr>
<td>4</td>
<td>9.08</td>
<td>10.2</td>
<td>0.890</td>
<td>211</td>
</tr>
</tbody>
</table>

Which information in the table would you use to tell Miranda whether any liquids could be the same substance and why?

Week 3: May 18-22
3. An element is made up of a single type of atom. A compound is made up of 2 or more different atoms chemically combined (connected). A mixture is made up of 2 or more elements or compounds that are not chemically combined. Identify each image below as an element, compound, or mixture.
4. Matter can be classified as solid (with closely packed particles), liquid (with loose particles that are still close) or gas (with particles that are spread farther apart). Adding heat/thermal energy can cause the matter to change phases.

Identify the letter that matches each part of the phase diagram.

Solid ____
Liquid ____
Gas ____
Melting ____
Freezing ____
Vaporization ____
Condensation ____